We think you are located in United States. Is this correct?

Summary

Do you need more Practice?

Siyavula Practice gives you access to unlimited questions with answers that help you learn. Practise anywhere, anytime, and on any device!

Sign up to practise now

1.5 Summary (EMBFD)

  • The number system:

    • \(\mathbb{N}\): natural numbers are \(\{1; \; 2; \; 3; \; \ldots\}\)

    • \(\mathbb{N}_0\): whole numbers are \(\{0; \; 1; \; 2; \; 3; \; \ldots\}\)

    • \(\mathbb{Z}\): integers are \(\{\ldots; \; -3; \; -2; \; -1; \; 0; \; 1; \; 2; \; 3; \; \ldots\}\)

    • \(\mathbb{Q}\): rational numbers are numbers which can be written as \(\frac{a}{b}\) where \(a\) and \(b\) are integers and \(b\ne 0\), or as a terminating or recurring decimal number.

    • \(\mathbb{Q}'\): irrational numbers are numbers that cannot be written as a fraction with the numerator and denominator as integers. Irrational numbers also include decimal numbers that neither terminate nor recur.

    • \(\mathbb{R}\): real numbers include all rational and irrational numbers.

    • \(\mathbb{R}'\): non-real numbers or imaginary numbers are numbers that are not real.

  • Definitions:

    • \({a}^{n}=a\times a\times a\times \cdots \times a \left(n \text{ times}\right) \left(a\in \mathbb{R},n\in \mathbb{N}\right)\)

    • \({a}^{0}=1\) (\(a \ne 0\) because \(0^0\) is undefined)

    • \({a}^{-n}=\frac{1}{{a}^{n}}\) (\(a \ne 0\) because \(\dfrac{1}{0}\) is undefined)

  • Laws of exponents:

    • \({a}^{m} \times {a}^{n}={a}^{m+n}\)
    • \(\dfrac{{a}^{m}}{{a}^{n}}={a}^{m-n}\)
    • \({\left(ab\right)}^{n}={a}^{n}{b}^{n}\)
    • \({\left(\frac{a}{b}\right)}^{n}=\dfrac{{a}^{n}}{{b}^{n}}\)
    • \({\left({a}^{m}\right)}^{n}={a}^{mn}\)
    where \(a > 0\), \(b > 0\) and \(m, n \in \mathbb{Z}\).
  • Rational exponents and surds:

    • If \(r^n = a\), then \(r = \sqrt[n]{a} \quad (n \geq 2)\)
    • \(a^{\frac{1}{n}} = \sqrt[n]{a}\)
    • \(a^{-\frac{1}{n}} = (a^{-1})^{\frac{1}{n}} = \sqrt[n]{\dfrac{1}{a}}\)
    • \(a^{\frac{m}{n}} = (a^{m})^{\frac{1}{n}} = \sqrt[n]{a^m}\)
    where \(a > 0\), \(r > 0\) and \(m,n \in \mathbb{Z}\), \(n \ne 0\).
  • Simplification of surds:

    • \(\sqrt[n]{a}\sqrt[n]{b} = \sqrt[n]{ab}\)
    • \(\sqrt[n]{\dfrac{a}{b}} = \dfrac{\sqrt[n]{a}}{\sqrt[n]{b}}\)
    • \(\sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a}\)