Summary
Previous
Applications of exponentials

Next
End of chapter exercises

1.5 Summary (EMBFD)

The number system:

\(\mathbb{N}\): natural numbers are \(\{1; \; 2; \; 3; \; \ldots\}\)

\(\mathbb{N}_0\): whole numbers are \(\{0; \; 1; \; 2; \; 3; \; \ldots\}\)

\(\mathbb{Z}\): integers are \(\{\ldots; \; 3; \; 2; \; 1; \; 0; \; 1; \; 2; \; 3; \; \ldots\}\)

\(\mathbb{Q}\): rational numbers are numbers which can be written as \(\frac{a}{b}\) where \(a\) and \(b\) are integers and \(b\ne 0\), or as a terminating or recurring decimal number.

\(\mathbb{Q}'\): irrational numbers are numbers that cannot be written as a fraction with the numerator and denominator as integers. Irrational numbers also include decimal numbers that neither terminate nor recur.

\(\mathbb{R}\): real numbers include all rational and irrational numbers.

\(\mathbb{R}'\): nonreal numbers or imaginary numbers are numbers that are not real.


Definitions:

\({a}^{n}=a\times a\times a\times \cdots \times a \left(n \text{ times}\right) \left(a\in \mathbb{R},n\in \mathbb{N}\right)\)

\({a}^{0}=1\) (\(a \ne 0\) because \(0^0\) is undefined)

\({a}^{n}=\frac{1}{{a}^{n}}\) (\(a \ne 0\) because \(\dfrac{1}{0}\) is undefined)


Laws of exponents:
 \({a}^{m} \times {a}^{n}={a}^{m+n}\)
 \(\dfrac{{a}^{m}}{{a}^{n}}={a}^{mn}\)
 \({\left(ab\right)}^{n}={a}^{n}{b}^{n}\)
 \({\left(\frac{a}{b}\right)}^{n}=\dfrac{{a}^{n}}{{b}^{n}}\)
 \({\left({a}^{m}\right)}^{n}={a}^{mn}\)

Rational exponents and surds:
 If \(r^n = a\), then \(r = \sqrt[n]{a} \quad (n \geq 2)\)
 \(a^{\frac{1}{n}} = \sqrt[n]{a}\)
 \(a^{\frac{1}{n}} = (a^{1})^{\frac{1}{n}} = \sqrt[n]{\dfrac{1}{a}}\)
 \(a^{\frac{m}{n}} = (a^{m})^{\frac{1}{n}} = \sqrt[n]{a^m}\)

Simplification of surds:
 \(\sqrt[n]{a}\sqrt[n]{b} = \sqrt[n]{ab}\)
 \(\sqrt[n]{\dfrac{a}{b}} = \dfrac{\sqrt[n]{a}}{\sqrt[n]{b}}\)
 \(\sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a}\)
Previous
Applications of exponentials

Table of Contents 
Next
End of chapter exercises
