Summary
Previous
Area, sine, and cosine rules

Next
End of chapter exercises

6.6 Summary (EMBHT)
square identity  quotient identity 
\(\cos^2\theta + \sin^2\theta = 1\)  \(\tan\theta = \dfrac{\sin\theta}{\cos\theta}\) 
negative angles  periodicity identities  cofunction identities 
\(\sin (\theta) =  \sin \theta\)  \(\sin (\theta \pm \text{360}\text{°}) = \sin \theta\)  \(\sin (\text{90}\text{°}  \theta) = \cos \theta\) 
\(\cos (\theta) = \cos \theta\)  \(\cos (\theta \pm \text{360}\text{°}) = \cos \theta\)  \(\cos (\text{90}\text{°}  \theta) = \sin \theta\) 
sine rule  area rule  cosine rule 
\(\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}\)  area \(\triangle ABC = \frac{1}{2} bc \sin A\)  \(a^2 = b^2 + c^2  2 bc \cos A\) 
\(\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}\)  area \(\triangle ABC = \frac{1}{2} ac \sin B\)  \(b^2 = a^2 + c^2  2 ac \cos B\) 
area \(\triangle ABC = \frac{1}{2} ab \sin C\)  \(c^2 = a^2 + b^2  2 ab \cos C\) 
General solution:
 \begin{align*} \text{If } \sin \theta &= x \\ \theta &= \sin^{1}x + k \cdot \text{360}\text{°} \\ \text{or } \theta &= \left( \text{180}\text{°}  \sin^{1}x \right) + k \cdot \text{360}\text{°} \end{align*}
 \begin{align*} \text{If } \cos \theta &= x \\ \theta &= \cos^{1}x + k \cdot \text{360}\text{°} \\ \text{or } \theta &= \left( \text{360}\text{°}  \cos^{1}x \right) + k \cdot \text{360}\text{°} \end{align*}
 \begin{align*}
\text{If } \tan \theta &= x \\
\theta &= \tan^{1}x + k \cdot \text{180}\text{°}
\end{align*}
for \(k \in \mathbb{Z}\).
How to determine which rule to use:

Area rule:
 no perpendicular height is given

Sine rule:
 no right angle is given
 two sides and an angle are given (not the included angle)
 two angles and a side are given

Cosine rule:
 no right angle is given
 two sides and the included angle angle are given
 three sides are given
Previous
Area, sine, and cosine rules

Table of Contents 
Next
End of chapter exercises
