We think you are located in South Africa. Is this correct?

End Of Chapter Exercises

Do you need more Practice?

Siyavula Practice gives you access to unlimited questions with answers that help you learn. Practise anywhere, anytime, and on any device!

Sign up to practise now

End of chapter exercises

Exercise 5.7

Solve for \(x\): \({x}^{3}+{x}^{2}-5x+3=0\)

\begin{align*} \text{Let } a(x) &= {x}^{3}+{x}^{2}-5x+3 \\ a(1) &= (1)^{3}+(1)^{2}-5(1)+3 \\ &= 0 \\ \therefore a(x) &= (x-1)(x^{2} + 2x - 3) \\ &= (x-1)(x+3)(x-1) \\ &= (x-1)^{2}(x+3) \\ \therefore 0 &= (x-1)^{2}(x+3) \\ \therefore x = 1 &\text{ or } x = -3 \end{align*}

Solve for \(y\): \({y}^{3} = 3{y}^{2} + 16y + 12\)

\begin{align*} \text{Let } a(y) &= {y}^{3}-3{y}^{2}-16y-12 \\ a(-1) &= (-1)^{3}-3(-1)^{2}-16(-1)-12 \\ &= -1-3+16-12 \\ &= 0 \\ \therefore a(y) &= (y +1)(y^{2} -4y -12) \\ &= (y+1)(y-6)(y+2) \\ \therefore 0 &= (y+1)(y-6)(y+2) \\ \therefore y = -1 &\text{ or } y=6 \text{ or } y =-2 \end{align*}

Solve for \(m\): \(m({m}^{2}-m-4) = - 4\)

\begin{align*} \text{Let } a(m) &= {m}^{3}-{m}^{2}-4m+4 \\ a(1) &= (1)^{3}-(1)^{2}-4(1)+4 \\ &= 1 - 1 - 4 +4 \\ &= 0 \\ \therefore a(m) &= (m-1)(m^{2} - 4) \\ &= (m-1)(m+2)(m-2) \\ \therefore 0 &= (m-1)(m+2)(m-2) \\ \therefore m = 1 &\text{ or } m=2 \text{ or } m =-2 \end{align*}

Solve for \(x\): \({x}^{3}-{x}^{2}=3\left(3x+2\right)\)

\begin{align*} {x}^{3}-{x}^{2} &= 3\left(3x+2\right) \\ {x}^{3}-{x}^{2} &= 9x + 6 \\ {x}^{3}-{x}^{2} -9x - 6 &= 0 \\ \text{Let } x =-2: \quad (-2)^{3}-(-2)^{2} -9(-2) - 6 \\ &= -8 -4 +18 - 6 \\ &= 0 \\ \therefore (x + 2) & \text{ is a factor} \\ (x + 2)(x^{2} - 3x -3) &= 0 \\ \text{Using quadratic formula to solve for } & x: x^{2} - 3x - 3 = 0 \\ a = 1; \quad b &= -3; \quad c=-3 \\ x &= \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} \\ &= \frac{-(-3) \pm \sqrt{(-3)^{2} - 4(1)(-3)}}{2(1)} \\ &= \frac{3 \pm \sqrt{9 + 12}}{2} \\ &= \frac{3 \pm \sqrt{21}}{2} \\ \therefore x = -2 &\text{ or } x =\frac{3 + \sqrt{21}}{2} \text{ or } x =\frac{3 - \sqrt{21}}{2} \end{align*}

Solve for \(x\) if \(2{x}^{3}-3{x}^{2}-8x=3\).

\begin{align*} 2{x}^{3}-3{x}^{2}-8x &= 3 \\ 2{x}^{3}-3{x}^{2}-8x -3 &= 0 \\ \text{Let } a(x) &= 2{x}^{3}-3{x}^{2}-8x -3 \\ a(-1) &= 2(-1)^{3}-3(-1)^{2}-8(-1) -3 \\ &= -2 -3 + 8 -3 \\ &= 0 \\ \therefore a(x) &= (x + 1)(2x^{2} -5x -3) \\ &= (x + 1)(2x + 1)(x - 3) \\ \therefore 0 &= (x + 1)(2x + 1)(x - 3) \\ \therefore x = -1 &\text{ or } x = - \frac{1}{2} \text{ or } x= 3 \end{align*}

Solve for \(x\): \(16\left(x+1\right)={x}^{2}\left(x+1\right)\)

\begin{align*} 16\left(x+1\right) &= {x}^{2}\left(x+1\right) \\ 16x + 16 &= {x}^{3} + {x}^{2} \\ 0 &= {x}^{3} + {x}^{2} - 16x - 16 \\ \text{Let } a(x) &= {x}^{3} + {x}^{2} - 16x - 16 \\ a(-1) &= (-1)^{3} + (-1)^{2} - 16(-1) - 16 \\ &= -1 + 1 +16 -16 \\ &= 0 \\ \therefore a(x) &= (x + 1)(x^{2} - 16) \\ &= (x + 1)(x - 4)(x +4) \\ \therefore 0 &= (x + 1)(x - 4)(x +4) \\ \therefore x = -1 &\text{ or } x = 4 \text{ or } x= -4 \end{align*}

Show that \(x-2\) is a factor of \(3{x}^{3}-11{x}^{2}+12x-4\).

\begin{align*} \text{Let } a(x) &= 3{x}^{3}-11{x}^{2}+12x-4 \\ a(2) &= 3(2)^{3}-11(2)^{2}+12(2)-4 \\ &= 24 - 44 +24 - 4 \\ &= 0 \\ \therefore (x-2) &\text{ is a factor of } a(x) \end{align*}

Hence, by factorising completely, solve the equation:

\(3{x}^{3}-11{x}^{2}+12x-4=0\)
\begin{align*} 3{x}^{3}-11{x}^{2}+12x-4 &= 0 \\ (x -2)(3x^{2} - 5x + 2) &= 0 \\ \therefore (x - 2)(3x - 2)(x - 1) &= 0 \\ \therefore x = 2 &\text{ or } x = \frac{2}{3} \text{ or } x = 1 \end{align*}

\(2{x}^{3}-{x}^{2}-2x+2=Q\left(x\right).\left(2x-1\right)+R\) for all values of \(x\). What is the value of \(R\)?

\begin{align*} \text{Let } a(x) &= 2{x}^{3}-{x}^{2}-2x+2 \\ R = a \left( \frac{1}{2} \right) &= 2\left( \frac{1}{2} \right)^{3}-\left( \frac{1}{2} \right)^{2}-2\left( \frac{1}{2} \right) + 2 \\ &= 2 \left( \frac{1}{8} \right) - \left( \frac{1}{4} \right) - 1 + 2 \\ &= \frac{1}{4} - \frac{1}{4} +1 \\ &= 1 \\ \therefore R &= 1 \end{align*}

Use the factor theorem to solve the following equation for \(m\):

\(8{m}^{3}+7{m}^{2}-17m+2=0\)
\begin{align*} \text{Let } a(m) &= 8{m}^{3}+7{m}^{2}-17m+2 \\ a(1) &= 8(1)^{3}+7(1)^{2}-17(1)+2 \\ &= 8 + 7 -17 + 2 \\ &= 0 \\ \therefore a(m) &= (m - 1)(8m^{2} + 15m - 2) \\ &= (m - 1)(8m - 1)(m + 2) \\ \therefore 0 &= (m - 1)(8m - 1)(m + 2) \\ \therefore m = 1 &\text{ or } m = \frac{1}{8} \text{ or } m = -2 \end{align*}

Hence, or otherwise, solve for \(x\):

\({2}^{3x+3}+7.{2}^{2x}+2=17.{2}^{x}\)
\begin{align*} {2}^{3x+3}+7 \cdot {2}^{2x}+2 &= 17 \cdot {2}^{x} \\ {2}^{3x} \cdot 2^{3} +7 \cdot {2}^{2x}+2 &= 17 \cdot {2}^{x} \\ 8 \cdot \left( {2}^{x} \right)^{3} +7 \cdot \left( {2}^{x} \right)^{2} - 17 \cdot {2}^{x} + 2 &= 0 \\ \text{which we can compare with } a(m) &= 8{m}^{3}+7{m}^{2}-17m+2 \\ \text{Let } 2^{x} &= m \\ \text{ and from part (a) we know that } m = 1 &\text{ or } m = \frac{1}{8} \text{ or } m = -2 \\ \text{So } 2^{x} &= 1 \\ 2^{x} &= 2^{0} \\ \therefore x &= 0 \\ \text{Or } 2^{x} &= \frac{1}{8} \\ 2^{x} &= 2^{-3} \\ \therefore x &= -3 \\ \text{Or } 2^{x} &= -2 \\ \therefore & \text{ no solution} \end{align*}

Find the value of \(R\) if \(x-1\) is a factor of \(h(x)= (x - 6) \cdot Q(x) + R\) and \(Q(x)\) divided by \(x-1\) gives a remainder of \(\text{8}\).

\begin{align*} h(x) &= (x - 6) \cdot Q(x) + R \\ h(1) &= (1 - 6) \cdot Q(1) + R \\ \therefore 0 &= -5 \cdot Q(1) + R \\ \text{And } Q(1) &= 8 \\ 0 &= -5(8) + R \\ \therefore R &= 40 \end{align*}

Determine the values of \(p\) for which the function

\[f\left(x\right)=3{p}^{3}-\left(3p-7\right){x}^{2}+5x-3\]

leaves a remainder of \(\text{9}\) when it is divided by \(\left(x-p\right)\).

\begin{align*} f\left(x\right) &= 3{p}^{3}-\left(3p-7\right){x}^{2}+5x-3 \\ \therefore f(p) &= 3{p}^{3}-\left(3p-7\right){p}^{2}+5p-3 \\ &= 3{p}^{3}- 3p^{3} + 7p^{2} + 5p - 3 \\ &= 7p^{2} + 5p - 3 \\ f(p) &= 9 \\ \therefore 9 &= 7p^{2} + 5p - 3 \\ 0 &= 7p^{2} + 5p - 12 \\ 0 &= (7p + 12)(p - 1) \\ \therefore p = -\frac{12}{7} &\text{ or } p = 1 \end{align*}

Alternative (long) method:

We first take out the factor using long division: \begin{align*} &\qquad \quad \underline{(7-3p)x + (5 + 7p -3p^{2})} \\ &(x-p) | (7-3p)x^{2} + 5x + (3p^{3} - 3)\\ &\quad \quad - \underline{\lbrace (7-3p)x^{2} - p(7-3p)x \rbrace} \\ &\qquad \qquad \qquad \qquad 0 + 5x + p(7-3p)x + (3p^{3}-3)\\ &\qquad \qquad \qquad \qquad \qquad 5x + 7px -3p^{2}x + 3p^{3}x \\ &\qquad \qquad \qquad \qquad \qquad [5 + 7p -3p^{2}]x + 3p^{3} - 3 \\ &\qquad \qquad \qquad \qquad \quad - \underline{\lbrace [5 + 7p -3p^{2}]x -p(5 + 7p - 3p^{2}) \rbrace}\\ &\qquad \qquad \qquad \qquad \qquad 0 + 3p^{3} - 3 + 5p + 7p^{2} -3p^{3} \end{align*}

We take the remainder and set it equal to 9: \begin{align*} -3 + 5p + 7p^{2} & = 9 \\ 7p^{2} + 5p - 12 & = 0\\ (7p+12)(p-1) & = 0\\ \therefore p = -\frac{12}{7} & \text{ or } p = 1 \end{align*}

Calculate \(t\) and \(Q(x)\) if \(x^{2} + tx + 3 = (x + 4) \cdot Q(x) - 17\).

\begin{align*} x^{2} + tx + 20 &= (x + 4) \cdot Q(x) \\ \text{Let } f(x) &= x^{2} + tx + 20 \\ f(-4) &= (-4)^{2} + t(-4) + 20 \\ 0 &= 16 -4t + 20 \\ 4t &= 36 \\ \therefore t &= 9 \\ & \\ x^{2} + 9x + 20 &= (x + 4) \cdot Q(x) \\ (x + 4)(x + 5)&= (x + 4) \cdot Q(x) \\ \therefore Q(x) &= x + 5 \end{align*}